National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Deposition of Ga and GaN ultrathin layers on graphene substrate
Dvořák, Martin ; Nebojsa, Alois (referee) ; Mach, Jindřich (advisor)
This diploma thesis deals with preparation of graphene samples for depositions of ultrathin layers of gallium and gallium nitride. Graphene substrates were prepared by chemical vapour deposition in home-build high temperature reactor. After graphene transfer to silicon wafers, a series of chemical and thermal treatments were performed. Obtained samples were suitable for the study of growth of ultrathin layers of Ga and GaN. The growth of Ga and GaN was realized in ultra high vacuum conditions. Molecular beam epitaxy technique was used for gallium depositions together with ion source for nitridation. Obtained ultrathin layers were studied with X-ray photoelectron spectroscopy, atomic force microscopy and with scanning electron microscopy.
The deposition of Ga and GaN nanostructures on silicon and graphene substrate
Mareš, Petr ; Hospodková,, Alice (referee) ; Mach, Jindřich (advisor)
Presented thesis is focused on the study of properties of Ga and GaN nanostructures on graphene. In the theoretical part of the thesis a problematics of graphene and GaN fabrication is discussed with a focus on the relation of Ga and GaN to graphene. The experimental part of the thesis deals with the depositions of Ga on transferred CVD-graphene on SiO2. The samples are analyzed by various methods (XPS, AFM, SEM, Raman spectroscopy, EDX). The properties of Ga on graphene are discussed with a focus on the surface enhanced Raman scattering effect. Furthermore, a deposition of Ga on exfoliated graphene and on graphene on a copper foil is described. GaN is fabricated by nitridation of the Ga structures on graphene. This process is illustrated by the XPS measurements of a distinct Ga peak and the graphene valence band during the process of nitridation.
Deposition of GaN nano structures on Si(111) 7x7
Šťastný, Jakub ; Horák, Michal (referee) ; Mach, Jindřich (advisor)
The thesis is focused on the study of growth of 2D GaN nanocrystals on Si(111) 7x7. In the theoretical part of this thesis the properties of 3D and 2D GaN, main methods used for growth of GaN and 2D GaN and applications of GaN are described. The experimental part of this thesis describes in detail the method of low temperature droplet epitaxy with assistance of ions, which was used for series of deposition of 2D GaN under different angles of ion beam. The deposition was done in the complex UHV system in the ÚFI VUT labs in Brno. The nanocrystals were analysed by SEM and AFM.
The deposition of Ga and GaN nanostructures on silicon and graphene substrate
Mareš, Petr ; Hospodková,, Alice (referee) ; Mach, Jindřich (advisor)
Presented thesis is focused on the study of properties of Ga and GaN nanostructures on graphene. In the theoretical part of the thesis a problematics of graphene and GaN fabrication is discussed with a focus on the relation of Ga and GaN to graphene. The experimental part of the thesis deals with the depositions of Ga on transferred CVD-graphene on SiO2. The samples are analyzed by various methods (XPS, AFM, SEM, Raman spectroscopy, EDX). The properties of Ga on graphene are discussed with a focus on the surface enhanced Raman scattering effect. Furthermore, a deposition of Ga on exfoliated graphene and on graphene on a copper foil is described. GaN is fabricated by nitridation of the Ga structures on graphene. This process is illustrated by the XPS measurements of a distinct Ga peak and the graphene valence band during the process of nitridation.
Deposition of Ga and GaN ultrathin layers on graphene substrate
Dvořák, Martin ; Nebojsa, Alois (referee) ; Mach, Jindřich (advisor)
This diploma thesis deals with preparation of graphene samples for depositions of ultrathin layers of gallium and gallium nitride. Graphene substrates were prepared by chemical vapour deposition in home-build high temperature reactor. After graphene transfer to silicon wafers, a series of chemical and thermal treatments were performed. Obtained samples were suitable for the study of growth of ultrathin layers of Ga and GaN. The growth of Ga and GaN was realized in ultra high vacuum conditions. Molecular beam epitaxy technique was used for gallium depositions together with ion source for nitridation. Obtained ultrathin layers were studied with X-ray photoelectron spectroscopy, atomic force microscopy and with scanning electron microscopy.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.